Pentagamavunon-1 (PGV-1) inhibits ROS metabolic enzymes and suppresses tumor cell growth by inducing M phase (prometaphase) arrest and cell senescence. Beni Lestari¹, Ikuko Nakamae¹, Noriko Yoneda-Kato¹, Tsumoru Morimoto², Shigehiko Kanaya³, Takashi Yokoyama¹, Masafumi Shionyu⁴, Tsuyoshi Shirai⁴, Edy Meiyanto⁵, and Jun-ya Kato^{1*} ¹Laboratory of Tumor Cell Biology, Division of Biological Science, ²Laboratory of Synthetic Organic Chemistry, Division of Materials Science, ³Laboratory of Computational Systems Biology, Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan, ⁴Nagahama Institute of Bio-Science and Technology, Nagahama, Japan, ⁵Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia. Figure S1 - Related to Figure 2 ## Legend for Supplementry Fig. S1 K562 cells (5 x 10^5 cells/mL) were treated with PGV-1 (0.8 μ M) for 0.5, 2, 4, 8, 12, 24, 48, and 72 hr, and then subjected to cell cycle analysis. The percentages of cells in each phase are shown as the mean \pm SD from three independent experiments. Figure S2 – Related to Figure 3